Main Diagram

7-05-2025 DhSchema.com @ DATE Wise Coders

Layouts

L. Main Diagram . 1
Tahles

kosnd_db. Art st [L 2
kosni_db. ArtistGenre [1 I . 2
kosni_db.Band [L I . 2
kosni_db.Band _Member [L I . 2
kosni_db. EntityImage [1 I . 3
kosni_db.Evaluat ion [L 1. 3
kosnd_db. Event [L 1 4
kosni_db.Festival [L . 5
kosni_db.Location [L .. 6
kosni_db.MusicGenre [L 1. =
kosni_db.Performance [1 1 . b
kosni_db.ResaleBuyerdueue [1 1 . E
kosni_db.ResaleTicket [1 1. . 9
kosnd_db. Statt [L D 10
kosni_db.StaffAssignment [L] . 10
kosnd_db. Stage [L 1 10
kosnd_db. Tioket [L 11
kosni_db.TicketResaleQueue [1 .. 12

kosni_db.

L T T I P 12

https://dbschema.com

Main Diagram

T-05-2025 DhSchema.com @ DATE Wise Coders

ResaleBuyeriueue

“© Queue_ID

O Buyer_ID

O Performance_ID
* Category

* Reguested_At

* Status

[P
™~

Buyer_ID

P

E

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
f.

Artist
O Artist_ID 4
* Real_MName t
Stage_Name t
Birthdate d
Hebsite t
Instagram_Profile t
Image t
i Image_Description t
< 2
A
o0
1]
=]
d
|
L
=
I Artist_ID J?
MusicGenre Band ArtistGenre
“O0 Genre_ID q *@ Band_ID q “O Artist_ID
Mame t “ Name t o Genre_ID
Subgenre t Formation_Date d
formance_I0
Hehsite t
Instagram_Profile t
m
st
| :
L
- |
|
I
Band_Member Artisg_ID I
e .
*® Band_ID :
“ Artist_ID :
|
|
I
|
|
I
|
|
I
|
| 2
=1
L
L
Artist_ID Performance
————————————————————————————— oL
“o Ferformance_ID 1
EntityImage
£ Ewvent_ID
S Artist_ID 0 Image_ID #
SO Band_ID * Entity_Type t
* Type 1 * Entity_ID #
* Btart_Time d Image_Description 1
/—D" Durat ion # * Image_Data
\4
[}
—
4~|
-
k]
=
(W]}
L
TicketResaledueue ResaleTicket
*@ Queue_ID # o ResaleTicket_ID #
SO Ticket_ID “O Ticket_ID
Hueue_Type 1 *© seller_ID
Queue_Timestamp d * Listed_At d
Seller_ID
* status t
o
=
I \4
+ 1]
o\ __ =
= \ +
= 1 L
T vy
[[]
| -—
> Ferformance_ID :
visitor visitor_ID Evaluation ;
< < !
“» Visitor_ID 1 *® Ewaluation_ID # ;
* First_Name t O Wisitor_ID ;
< Last_Name t *©O Performance_ID :
* Contact_Info 1 * Evaluation_Date i ;
* fge # * grtist_Performance # ;
* sound_Lighting # ;
A * Stage_Presence # :
* Drganization # ;
* Overall_Impression # ;
I
|
|
I
|
|
|
|
|
|
|
|
‘L \ 4
S PEPfDPmanCE_I%< Ticket
Yisitor_ID
~ <*» Ticket_ID “
*© Pertormance_ID
O Wisitor_ID
* Category t
*fo Purchase_Date d
* Cost #
* Payment_Method t
jD EAN151_Code #
Activated]

[¢

"PYY

StaffAssignment
* Staff_ID
* Event_ID
[} [
— —
-|—'I *-o—l
= o
a 1s]
=4 +
Ll (2]
Location
Location_ID N
Address t
Coordinates t
City t
Country t
Continent t
Image t
Image_Description t

Stage

stage_ID

Mame

Description
Max_Capacity
Technical _Equipment
Image
Image_Description

~+ ~+ ~+ * ~+ ~+ J

Festival

o Festiwval_ID

* Year

* start_Date

* End_Date
Image

Image_Description
*© Location_ID
* Status

A/

-
m
o
—+
=
o
s
II—I
(o)
Event \ﬁtage_ID
1
Event_ID 1
Festival_ID
Stage_ID
Start_Time d
End_Time d
Status t

Staff
Staff_ID
Name
Age
Role

Experience_Level

~ o~ I ~+ 4

Locat 1on{ID

d

d

https://dbschema.com
#kosni_db.Artist
#kosni_db.ArtistGenre
#kosni_db.Band
#kosni_db.Band_Member
#kosni_db.EntityImage
#kosni_db.Evaluation
#kosni_db.Event
#kosni_db.Festival
#kosni_db.Location
#kosni_db.MusicGenre
#kosni_db.Performance
#kosni_db.ResaleBuyerQueue
#kosni_db.ResaleTicket
#kosni_db.Staff
#kosni_db.StaffAssignment
#kosni_db.Stage
#kosni_db.Ticket
#kosni_db.TicketResaleQueue
#kosni_db.Visitor

Main Diagram

Table Artist

Idx Name Data Tuype

* FPK Artist_ID INT AUTO_IMCREMENT

* Real_Name YARCHAR(100)
Stage_Name YARCHAR (100)
Birthdate DATE
Hebsite YARCHAR (255)
Instagram_Profile WARCHAR(255)
Image TEXT
Image_Description TEXT

Indexes

Tupe Name On

PE. pk_artist Artist_ID

Options

ENGINE=InnoDE AUTO_INCREMENT=101 DEFAULT CHARSET=utfE8mh4 COLLATE-utfBmb4_general_ci

Table ArtistGenre

Icx Name Data Tuype

* PK Artist_ID INT

* PK Genre_ID INT

Indexes

Tupe Name On

Pk pk_artistgenre Artist_ID, Genre_ID
Genre_ID Genre_ID

Foreign Keys

Tupe Name On
ArtistGenre_ibfk_1 ({ Artist_ID) ref Artist { Artist_ID)
ArtistGenre_ibfk_2 (Genre_ID)} ref MusicGenre (Genre_ID)

Options

ENGINE=InnoDE DEFAULT CHARSET=utf8mb4 COLLATE=utfBmhd_general_ci

Icx Name Data Tuype

* PK Band_ID INT AUTO_IMCREMEMT

* Name WARCHAR ([100)
Formation_Date DATE
Hebsite YARCHAR (255)
Instagram_Profile WARCHAR(255)

Indexes

Type Name On

PE. pk_band Band_ID

Options

ENGINE=InnoDE AUTO_INCREMENT=101 DEFAULT CHARSET=utfSmh4 COLLATE-utfBmb4_general_ci

Table Band_Member
Icx Name Data Tuype
PK Band_ID INT

Table Band_Member

* Pk
Indexes
Tupe

Pk

Artist_ID

Name
pk_band_member
Artist_ID

Foreign Keys

Type

Options

ENGINE=InnoDB DEFAULT CHARSET=utfSmh4 COLLATE=utfBmb4_general_ci

Name

Band_Member_ibfk_1 { Band_ID)} ref Band { Band_ID)}

INT

On
Band_ID, Artist_ID
Artist_ID

Band_Member_ibfk_2 (Artist_ID) ref Artist { Artist_ID)

Table EntityImage

Idx
* PK
¥

#

*
Indexes
Type

Pk

Options

EMGINE=InnoDB DEFAULT CHARSET=utfSmb4 COLLATE=utf8mbd_general_ci

Name

Image_ID
Entity_Type
Entity_ID
Image_Description

Image_Data

Name
pk_entityimage

Table Evaluation

Data Type

INT AUTO_IMCREMEMNT

ENUM{ 'Festival', "Artist', 'Band', 'Stage’, 'Equipment ')
INT

WARCHAR (255

LONGELOE

On
Image_ID

Idx
* PR
#* Ung
* ng

*
*
Indexes
Type

Pk

U

Name

Evaluation_ID
Yisitar_ID
Performance_ID
Evaluation_Date
Artist_Performance
Sound_Lighting
Stage_Presence
Organization

Overall_Impression

Name
pk_evaluation
Yisitor_ID

idx_evaluation_visitor

idx_evaluation_performance

Foreign Keys

Type

Name

Data Tupe

INT AUTO_IMCREMEMNT

INT

INT

DATETIME DEFAULT current_timestamp()
TINYINT

TINYINT

TINYINT

TINYINT

TINYINT

On

Evaluation_ID

Yisitor_ID, Performance_ID
Yisitar_ID

Performance_ID

On

Evaluation_ibfk_1 (Visitor_ID) ref VYisitor (Visitor_ID)

Evaluation_ibfk_2 (Performance_ID) ref Performance (Performance_ID)

Constraints

Name

Definition

Table Evaluation

Triggers

chs_evaluation_artist_performance
cns_evaluation_sound_lighting
chs_evaluation_stage_presence
cns_evaluation_organization

chs_ewvaluation_overall_impression

Name

check_evaluation_ticket_activation
CREATE TRIGGER #inameWithSchemaMamei BEFORE IMSERT ONM Evaluation

DECLARE ticket_count INT;

SELECT

COUMT () INTO ticket_count

FROM Ticket t

JOIM Performance p OM t.Performance_ID = p.Performance_ID
WHERE t.¥isitor_ID = NEW.Visitor_ID
AND t.Performance_ID = MEW.Performance_ID

AND t.Activated = 1;
IF ticket_count = O THEN
SIGMAL SOLSTATE '45000°
SET MESSAGE_TEXT = 'Evaluation not allowed: wisitor must have an activated ticket for the performance.';

END IF;

EMD

Options

“Artist_Performance’ hetween 1 and 3
“Sound_Lighting” between 1 and 3
"Stage_Presence’ hetween 1 and 3
“Organization between 1 and 3

"Overall_Impression’ between 1 and 3

Definition

FOR EACH ROW BEGIN

ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT CHARSET=utf8mbd4 COLLATE=utfBmb4_general_ci

Table Event

Idx

* PR
Idw
* ng
#* Ung
*

#*
Indexes
Tupe
Pk
lIng

Name
Event_ID
Festival_ID
Stage_ID
Start_Time
End_Time
Status

Name

pk_event

Stage_ID
idx_event_festival

idx_event_stage

Foreign Keys

Type

Name

Event_ibfk_1 { Festival_ID) ref Festival { Festival_ID
Event_ibfk_2 (Stage_ID) ref Stage (Stage_ID)

Constraints

Triggers

Name
CONSTRAINT_1
CONSTRAINT_Z2

Name

prevent _event _owverlap

Data Type

INT AUTO_IMCREMEMNT

INT

INT

DATETIME

DATETIME

ENUM('Scheduled', 'Ongoing ', 'Completed') DEFAULT 'Scheduled’

On

Event_ID

Stage_ID, Start_Time
Festival_ID

Stage_ID

On

)

Definition
“End_Time™ » “Start_Time"

"Status’ <> 'Canceled’

Definition

Table Event

CREATE TRIGGER #inameWithSchemaMame} BEFORE IMSERT OM Ewent FOR EACH ROW BEGIM
DECLARE owerlap_count INT;
SELECT COUNT(#) INTO owerlap_count
FROM Event
WHERE Stage_ID = MEW.Stage_ID
AND Festival_ID = NEW.Festiwval_ID
AND DATE(Start_Time) = DATE(MEW.Start_Time)
AMD
MEW.Start_Time < End_Time AND
NEW.End_Time > Start_Time
D3
IF owverlap_count > 0O THEM
SIGNAL SOLSTATE '45000°
SET MESSAGE_TEXT = 'Error: Overlapping event detected on the same stage.';
END IF;
END

prevent_event_overlap_update

CREATE TRIGGER #inameHithSchemaMame: BEFORE UPDATE OM Ewent FOR EACH ROW BEGIM
DECLARE owerlap_count INT;
SELECT COUNT(#) INTO owerlap_count
FROM Event
WHERE Stage_ID = MEW.Stage_ID
AMD Festival_ID = MEW.Festiwval_ID
AMND Event_ID != MEW.Ewent_ID
AND
NEW.Start_Time < End_Time AMND
MEW.End_Time > Start_Time
)8
IF owverlap_count > O THENM
SIGNAL SOLSTATE '45000°
SET MESSAGE_TEXT = 'Error: Overlapping event detected on the same stage.';
END IF;
END

Options
ENGINE=InnoDB AUTO_INCREMENT=201 DEFAULT CHARSET=utf8mbd4 COLLATE=utfamb4_general_ci

Table Festival

Idx Name Data Tuype

* Pk Festival_ID INT AUTO_IMCREMEMNT

* Year YEAR(4)

* Start_Date DATE

* End_Date DATE
Image TEXT
Image_Description TEXT

T Location_ID INT

Status ENUM('Scheduled', 'Ongoing ', 'Completed') DEFAULT 'Scheduled’

Indexes

Type Name On

Fk. pk_festival Festival_ID
Location_ID Location_ID

Foreign Keys

Type Name On
Festival_ibfk_1 { Location_ID) ref Location (Location_ID)
Constraints
Name Definition
CONSTRAINT_1 "End_Date” > “Start_Date’
CONSTRAINT_2 “Status® <> 'Canceled’
Options

ENGINE=InnoDE AUTO_INCREMENT=21 DEFAULT CHARSET=utfSmb4 COLLATE=utf8mbd_general_ci

Table Location

Idx Name Data Tuype

* Pk Location_ID INT AUTO_IMCREMEMNT

* Address YARCHAR {255
Coordinates YARCHAR {100

#* City YARCHAR{100)

* Country YARCHAR {100)
Continent YARCHAR {100
Image TEXT
Image_Description TEXT

Indexes

Type Name On

PE. pk_location Location_ID

Options

ENGINE=InnoDE AUTO_INCREMENT=21 DEFAULT CHARSET=utf8mb4 COLLATE=utfBmb4_general_ci

Table MusicGenre

Iclx Name Data Tuype
* PK Genre_ID INT
Name TEXT
Subgenre TEXT
Indexes
Type Name On
Pk pk_musicgenre Genre_ID
Options

ENGINE=InnoDE DEFAULT CHARSET=utfSmb4 COLLATE=utfSmbd_general_ci

Table Performance

Iclx Name Data Tuype

* PK Performance_ID INT AUTO_INCREMENT

Tdx Event _ID INT

Tdx Artist_ID INT

Tl Band_ID INT

Type ENUM{ "Warm Up', 'Headline', 'Special Guest')

* Start_Time DATETIME

* Duration INT

Indexes

Type Name On

Fk. pk_performance Ferformance_ID
idx_performance_artist Artist_ID
idx_performance_band Band_ID
idx_performance_gvent Event _ID

Foreign Keys

Type Name On
Performance_ibfk_1 (Event_ID } ref Event { Ewvent_ID)}
Performance_ibfk_2 (Artist_ID) ref Artist { Artist_ID)
Performance_ibfk_3 (Band_ID) ref Band (Band_ID)

Constraints

Name Definition

Table Performance

cns_performance_durat ion ‘Duration” » 0 and “Duration’ <= 180
CONSTRAINT_1 _Artist_ID’ is not null and "Band_ID" is null or
Artist_ID is null and Band_ID is not null
Triggers
Name Definition

check_artist_consecutive_years

CREATE TRIGGER #inameWithSchemaMame}! BEFORE IMSERT OM Performance FOR EACH ROW BEGIM
DECLARE year INT;
DECLARE consecutive_years INT;
IF MEW.Artist_ID IS5 MOT NULL THENM

SELECT f.%ear INTO year

FROM Event e

JOIN Festival f ON e.Festival_ID = f.Festival_ID
WHERE e.Event_ID = MEW.Ewent_ID;

SELECT COUNT(DISTINCT f.%ear) INTO consecutive_years
FROM Performance p
JOIN Event e OW p.Event_ID = e.Event_ID
JOIN Festival f ON e.Festival_ID = f.Festival_ID
WHERE p.Artist_ID = NEMW.Artist_ID

AND f.%Year BETHEEN year - 2 AND year;
IF consecutive_years > 3 THEM

SIGNAL SELSTATE '45000°

SET MESSAGE_TEXT = 'Artist cannot perform more than 3 consecutive uears.';
END IF;
END IF;
END

check_band_consecut ive_years

CREATE TRIGGER #inameHithSchemaMame?: BEFORE INSERT OM FPerformance FOR EACH ROW BEGIM
DECLARE current_year INT;
DECLARE consecutive_years INT;
IF MEW.Band_ID IS NOT MULL THENM

SELECT f.¥ear INTO current_year

FROM Event e

JOIN Festival f OM e.Festival_ID = f.Festival_ID
WHERE e.Ewent_ID = MEW.Ewvent_ID;

SELECT COUNT(DISTINCT f.%ear) INTO consecutive_years
FROM Performance p
JOIM Event e OM p.Event_ID = e.Event_ID
JOIN Festival f OM e.Festival_ID = f.Festival_ID
WHERE p.Band_ID = MNEW.Band_ID

AND f.%ear BETHWEEN current_uyear - 2 AND current_year;
IF consecutive_years >= 3 THEN

SIGNAL SOLSTATE '45000°

SET MESSAGE_TEXT = 'Band cannot perform more than 3 consecutive years.';
END IF;
END IF;
END

check_performance_break

Table Performance

CREATE TRIGGER #inameWithSchemaMame}! BEFORE IMSERT OM Performance FOR EACH ROW BEGIM
DECLARE prewvious_end_time DATETIME;
DECLARE break_duration INT;
DECLARE conflicting_count INT;

SELECT COUNT(#) INTO conflicting_count

FROM Performance

WHERE Ewent_ID = MEW.Ewent_ID
AND DATE(Start_Time) = DATE(MEW.Start_Time)
AMD

(NEW.Start_Time BETWEEN Start_Time AND (Start_Time + INTERWAL Duration MINUTE - INTERWAL 1 SECOND))

OR ((MEW.Start_Time + INTERVAL MEW.Duration MINUTE - INTERVAL 1 SECOND) BETWEEN Start_Time AND (Start_Time + INTERVAL
Duration MINUTE - INTERWAL 1 SECOND))

OR (Start_Time BETWEEM NEW.Start_Time AND (MEW.Start_Time + INTERVAL MEW.Duration MINUTE - INTERWAL 1 SECOND))

) bl
IF conflicting_count > O THEN

SIGNAL SOLSTATE '45000°

SET MESSAGE_TEXT = 'Performance time overlaps with an existing performance.';

END IF;
SELECT MAX(Start_Time + INTERWAL Duration MINUTE) INTO previous_end_time
FROM Performance
WHERE Ewent_ID = MEW.Ewent_ID

AND Start_Time < MNEHW.Start_Time

AND DATE(Start_Time) = DATE(MNEW.Start_Time);
IF previous_end_time IS NOT NULL THEN

SET hreak_duration = TIMESTAMPDIFF(MINUTE, previous_end_time, MNEW.Start_Time);

IF hreak_duration < 5 OR hreak_duration > 30 THEN
SIGNAL SELSTATE '45000°
SET MESSAGE_TEXT = 'Break between performances must be between 5 and 30 minutes.';
END IF;
END IF;
END

prevent_artist_overlap

CREATE TRIGGER #inameHithSchemaMame?: BEFORE INSERT OM FPerformance FOR EACH ROW BEGIM
DECLARE owerlap_count INT;
DECLARE festival_id INT;
IF MEW.Artist_ID IS NOT MULL THEM
SELECT e.Festival _ID INTO festiwval_id
FROM Event e
WHERE e.Ewent_ID = MEW.Ewvent_ID;
SELECT COUMT(x) INTO owverlap_count
FROM Performance p
JOIN Event e OW p.Event_ID = e.Event_ID
WHERE p.Artist_ID = NEMW.Artist_ID
AMD e.Festival_ID = festival_id
AMD
MEW.Start_Time < ADDTIME(p.Start_Time, SEC_TO_TIME(p.Duration s 60)) AND
ADDTIME (MEW.Start_Time, SEC_TO_TIME(MNEW.Duration = 60)) > p.Start_Time

IF owerlap_count > O THEN
SIGNAL SOLSTATE '45000°
SET MESSAGE_TEXT = 'Artist has overlapping performance in the same festival.';
END IF;
END IF;
END

prevent_band_overlap

Table Performance

CREATE TRIGGER #inameWithSchemaMame! BEFORE INSERT OM Performance FOR EACH ROW BEGIM
DECLARE owerlap_count INT;
DECLARE festiwval_id INT;
IF MEW.Band_ID IS NOT NULL THEM
SELECT e.Festival_ID INTO festival_id
FROM Ewvent e
WHERE e.Event_ID = MEW.Event_ID;
SELECT COUNT(#) INTO owerlap_count
FROM Performance p
JOIN Event e ON p.Event_ID = e.Event_ID
WHERE p.Band_ID = MEW.Band_ID
AND e.Festival_ID = festival_id
AND
MNEW.S5tart_Time < ADDTIME(p.Start_Time, SEC_TO_TIME(p.Duration *x 60)) AND
ADDTIME (NEW.Start_Time, SEC_TO_TIME(MEW.Duration = 60} > p.Start_Time
JE
IF overlap_count > O THEN
SIGNAL SELSTATE '45000°
SET MESSAGE_TEXT = 'Band has overlapping performance in the same festival.';
END IF;
END IF;
END

Options
ENGINE=InnoDE AUTO_IMCREMENT=201 DEFAULT CHARSET=utf8mbd COLLATE=utfSmhd_general_ci

Table ResaleBuyerfueue

Iclx Name Data Tuype
* PK Queue_ID INT AUTO_IMCREMEMT
Tdx Buyer_ID INT
Tdx Performance_ID INT
* Category EMUM{ 'General', 'WIP', 'Backstage')
* Reguested_At DATETIME DEFAULT current_timestampi)
* Status EMUM{ 'Waiting', 'Matched', 'Cancelled') DEFAULT 'Maiting'
Indexes
Type Name On
Pk pk_resalebuyergueus Queue_ID
idx_resalebuyergueue_buyer Buyer_ID
idx_resalebuyergueue_performance Performance_ID

Foreign Keys

Type Name On
ResaleBuyerQueue_ibfk_1 { Buyer_ID } ref Visitor (visitor_ID)
ResaleBuyerQueue_ibfk_2 { Performance_ID) ref Performance | Performance_ID)

Options

ENGIMNE=InnoDE AUTO_INCREMENT=51 DEFAULT CHARSET=utfSmbd4 COLLATE=utf8mbd4_general_ci

Table ResaleTicket

Idx Name Data Tuype
* Pk ResaleTicket_ID INT AUTO_IMCREMEMNT
Idw Ticket_ID INT
T Seller_ID INT
* Listed_aAt DATETIME DEFAULT current_timestampi)
* Status EMUM{ 'Available', 'Sold', 'Withdrawn') DEFAULT 'Awvailable’
Indexes
Type Name On
Pk pk_resaleticket ResaleTicket_ID
idx_resaleticket_ticket Ticket_ID

idx_resaleticket_seller Seller_ID

Table ResaleTicket

Foreign Keys

Type Name On
ResaleTicket_ibfk_1 (Ticket_ID) ref Ticket (Ticket_ID)
ResaleTicket_ibfk_2 (Seller_ID) ref Visitor { Visitor_ID)

Options

ENGINE=InnoDE AUTO_IMCREMEMT=51 DEFAULT CHARSET=utf8mh4 COLLATE=utfE8mbhd_general_ci

Table Staff

Iclx Name Data Tuype
#* PK Staff_ID INT AUTO_IMCREMEMT
* Narme YARCHAR {100
* Age INT
* Role EMUM{ 'Technical', 'Security’, "Auxiliary')
* Experience_Level E?QT('Intern','Beginner','Intermediate','Experienced','Expe
r
Indexes
Tupe Name On
Pk pk_staff Staff_ID
Constraints
Name Definition
cns_staff_age “Age” »= 18
Options

ENGINE=InnoDE AUTO_INCREMENT=301 DEFAULT CHARSET=utf8mbd4 COLLATE=utfimb4_general_ci

Table StaffAssignment

Iclx Name Data Tuype

#* PK Staff_ID INT

* PK Event_ID INT

Indexes

Type Name On

Pk pk_staffassignment Staff_ID, Event_ID
idx_staffassignment_staff Staff_ID
idx_staffassignment _event Event _ID

Foreign Keys

Type Name On
StaffAssignment_ibfk_1 (Staff_ID) ref Staff { Staff_ID)
StaffAssignment _ibfk_2 (Event_ID)} ref Event { Event_ID)

Options

ENGINE=InnoDE DEFAULT CHARSET=utf8mbd4 COLLATE=utf8mhd_general_ci

Table Stage

Idx Name Data Tuype
* PK Stage_ID INT AUTO_IMCREMEMNT
* Name YARCHAR{100)
Description TEXT
* Max_Capacity INT
Technical _Equipment TEXT

Image TEXT

Table Stage

Image_Description

Indexes

Type Name

Pk pk_stage
Constraints

Name

chs_stage_max_capacity

Options

TEXT

On
Stage_ID

Definition

"Max_Capacity™ > 0

EMGINE=InnoDB AUTO_INCREMEMT=61 DEFAULT CHARSET=utfBmb4 COLLATE=utfBmb4_general_ci

Table Ticket
Idx Name
* Pk Ticket_ID

* Ung Performance_ID
* Ung Yisitor_ID
* Category

* Ung Purchase_Date

* Cost

* Payment _Method

* Ung EAN131_Code
Activated

Indexes

Type Name

Pk pk_ticket

Ung EAN131_Code

ng Visitor_ID

idx_ticket_performance

idx_ticket_wisitor
Foreign Keys

Type Name

Data Type

INT AUTO_IMCREMEMNT

INT

INT

ENUM{ 'General', '"WIP', 'Backstage ')

DATE

DECIMAL(10,2)

EMUM{ 'Credit Card', 'Debit Card', 'Bank Transfer')
BIGINT

BOOLEAM DEFAULT false

On

Ticket_ID

EAN131_Code

Visitor_ID, Performance_ID, Purchase_Date
Ferformance_ID

Yisitar_ID

On

Ticket_ibfk_1 (Performance_ID) ref Performance { Performance_ID)

Ticket_ibfk_2 (Visitor_ID) ref Visitor (Visitor_ID)

Triggers
Name

check_stage_capacity

Definition

CREATE TRIGGER $inameWithSchemaName! BEFORE INSERT ONM Ticket FOR EACH ROW BEGIM

DECLARE total_tickets INT;
DECLARE stage_capacity INT;

SELECT COUNMT(#) INTO total_

FROM Ticket

HWHERE Performance_ID = MNEH.
SELECT s.Max_Capacity INTO
FROM Performance p

JOIM Event e OWN p.Event_ID
JOIMN Stage s ON e.5tage_ID

WHERE p.Performance_ID = NEW

tickets

Performance_ID;

stage_capacity

= e.Event_ID
= s.53tage_ID

IF total_tickets »= stage_capacity THEN

SIGNAL SOLSTATE '45000'

.Performance_ID;

SET MESSAGE_TEXT = 'Cannot sell ticket: stage capacity exceeded.';

END IF;
END

check_wvip_limit

Table Ticket

CREATE TRIGGER #inameWithSchemaMame}! BEFORE INSERT OM Ticket FOR EACH ROW BEGIM
DECLARE wip_tickets INT;
DECLARE stage_capacity INT;
DECLARE max_wip_tickets INT;
IF MEW.Category = 'WIP' THENM
SELECT COUNT(%) INTO wip_tickets
FROM Ticket
HHERE FPerformance_ID = NEW.Performance_ID
AND Category = 'WIP';
SELECT s.Max_Capacity INTO stage_capacity
FROM Performance p
JOIM Event e OM p.Event_ID = e.Event_ID
JOIN Stage = 0OW e.Stage_ID = s.5tage_ID
HHERE p.Performance_ID = MNEHW.Performance_ID;
SET max_wip_tickets = FLOOR(stage_capacity =* 0.10);
IF wip_tickets »= max_vip_tickets THEN
SIGNAL SOLSTATE '45000°
SET MESSAGE_TEXT = 'Cannot sell VIP ticket: WIP limit exceeded.';
END IF;
END IF;
END

Options
ENGINE=InnoDB AUTO_INCREMENT=401 DEFAULT CHARSET=utf8mbd4 COLLATE=utfamb4_general_ci

Table TicketResaleQueue

Idx Name Data Tuype

* Pk Queue_ID INT

Tdx Ticket_ID INT
Queue_Type TEXT
Queue_Timestamp DATETIME

Indexes

Type Name On

Pk pk_ticketresalegueue Queue_ID
Ticket_ID Ticket_ID

Foreign Keys

Type Name On
TicketResaleQueue_ibfk_1 (Ticket_ID) ref Ticket (Ticket_ID)

Options

ENGINE=InnoDE DEFAULT CHARSET=utf8mbd COLLATE=utfEmbd_general_ci

Table Visitor

Iclx Name Data Tuype
* Pk Visitor_ID INT AUTO_IMCREMEMT
* First_Name YARCHAR {100
* Last_Name YARCHAR{100]
* Contact_Info YARCHAR (255)
* Age INT
Indexes
Type Name On
Fk. pk_visitaor Yisitor_ID
Constraints
Name Definition
cns_visitor_age “Age” »= 0
Options

EMGINE=InnoDB AUTO_INCREMEMT=401 DEFAULT CHARSET=utfBmb4 COLLATE=utfSmb4_general_ci

Schema kosni_db

Procedures

FrocessResalelueue

