

Layouts

1. Main Diagram 1

Tables
kosni_db.Artist [1] 2

kosni_db.ArtistGenre [1] 2

kosni_db.Band [1] 2

kosni_db.Band_Member [1] 2

kosni_db.EntityImage [1] 3

kosni_db.Evaluation [1] 3

kosni_db.Event [1] 4

kosni_db.Festival [1] 5

kosni_db.Location [1] 6

kosni_db.MusicGenre [1] 6

kosni_db.Performance [1] 6

kosni_db.ResaleBuyerQueue [1] 9

kosni_db.ResaleTicket [1] 9

kosni_db.Staff [1] 10

kosni_db.StaffAssignment [1] 10

kosni_db.Stage [1] 10

kosni_db.Ticket [1] 11

kosni_db.TicketResaleQueue [1] 12

kosni_db.Visitor [1] 12

Main Diagram

7-05-2025 DbSchema.com © DATE Wise Coders

https://dbschema.com

Main Diagram 7-05-2025 DbSchema.com © DATE Wise Coders

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Db
Sc
he
ma
 T
ri
al

Location

Visitor

MusicGenre

Artist_ID

Genr
e_ID

Band_I
D

Artist_ID

Visitor_ID

Performance_ID

Fes
tival_

ID

Stage_ID

Lo
ca
t
io
n_
ID

E
ve
n
t_
ID

Artist_ID

Band_ID

Bu
ye
r_
ID

Performance_ID

T
ic
ke
t_
ID

Seller_ID

St
af
f_
ID

Ev
en
t_
ID

Performance_ID

Visitor_ID

Ti
ck
et
_I
D

Artist

Artist_ID

Real_Name t

Stage_Name t

Birthdate d

Website t

Instagram_Profile t

Image t

Image_Description t

ArtistGenre

Artist_ID

Genre_ID

Band

Band_ID

Name t

Formation_Date d

Website t

Instagram_Profile t

Band_Member

Band_ID

Artist_ID

EntityImage

Image_ID #

Entity_Type t

Entity_ID #

Image_Description t

Image_Data ~

Evaluation

Evaluation_ID #

Visitor_ID

Performance_ID

Evaluation_Date d

Artist_Performance #

Sound_Lighting #

Stage_Presence #

Organization #

Overall_Impression #

Event

Event_ID

Festival_ID

Stage_ID

Start_Time d

End_Time d

Status t

Festival

Festival_ID

Year #

Start_Date d

End_Date d

Image t

Image_Description t

Location_ID

Status t

Location

Location_ID

Address t

Coordinates t

City t

Country t

Continent t

Image t

Image_Description t

MusicGenre

Genre_ID

Name t

Subgenre t

Performance

Performance_ID

Event_ID

Artist_ID

Band_ID

Type t

Start_Time d

Duration #

ResaleBuyerQueue

Queue_ID #

Buyer_ID

Performance_ID

Category t

Requested_At d

Status t

ResaleTicket

ResaleTicket_ID #

Ticket_ID

Seller_ID

Listed_At d

Status t

Staff

Staff_ID

Name t

Age #

Role t

Experience_Level t

StaffAssignment

Staff_ID

Event_ID

Stage

Stage_ID

Name t

Description t

Max_Capacity #

Technical_Equipment t

Image t

Image_Description t

Ticket

Ticket_ID

Performance_ID

Visitor_ID

Category t

Purchase_Date d

Cost #

Payment_Method t

EAN131_Code #

Activated b

TicketResaleQueue

Queue_ID #

Ticket_ID

Queue_Type t

Queue_Timestamp d

Visitor

Visitor_ID

First_Name t

Last_Name t

Contact_Info t

Age #

https://dbschema.com
#kosni_db.Artist
#kosni_db.ArtistGenre
#kosni_db.Band
#kosni_db.Band_Member
#kosni_db.EntityImage
#kosni_db.Evaluation
#kosni_db.Event
#kosni_db.Festival
#kosni_db.Location
#kosni_db.MusicGenre
#kosni_db.Performance
#kosni_db.ResaleBuyerQueue
#kosni_db.ResaleTicket
#kosni_db.Staff
#kosni_db.StaffAssignment
#kosni_db.Stage
#kosni_db.Ticket
#kosni_db.TicketResaleQueue
#kosni_db.Visitor

Main Diagram

Table Artist

Idx Name Data Type

* Pk Artist_ID INT AUTO_INCREMENT

* Real_Name VARCHAR(100)

Stage_Name VARCHAR(100)

Birthdate DATE

Website VARCHAR(255)

Instagram_Profile VARCHAR(255)

Image TEXT

Image_Description TEXT

Indexes

Type Name On

Pk pk_artist Artist_ID

Options

ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table ArtistGenre

Idx Name Data Type

* Pk Artist_ID INT

* Pk Genre_ID INT

Indexes

Type Name On

Pk pk_artistgenre Artist_ID, Genre_ID

Genre_ID Genre_ID

Foreign Keys

Type Name On

ArtistGenre_ibfk_1 (Artist_ID) ref Artist (Artist_ID)

ArtistGenre_ibfk_2 (Genre_ID) ref MusicGenre (Genre_ID)

Options

ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Band

Idx Name Data Type

* Pk Band_ID INT AUTO_INCREMENT

* Name VARCHAR(100)

Formation_Date DATE

Website VARCHAR(255)

Instagram_Profile VARCHAR(255)

Indexes

Type Name On

Pk pk_band Band_ID

Options

ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Band_Member

Idx Name Data Type

* Pk Band_ID INT

Table Band_Member

* Pk Artist_ID INT

Indexes

Type Name On

Pk pk_band_member Band_ID, Artist_ID

Artist_ID Artist_ID

Foreign Keys

Type Name On

Band_Member_ibfk_1 (Band_ID) ref Band (Band_ID)

Band_Member_ibfk_2 (Artist_ID) ref Artist (Artist_ID)

Options

ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table EntityImage

Idx Name Data Type

* Pk Image_ID INT AUTO_INCREMENT

* Entity_Type ENUM('Festival','Artist','Band','Stage','Equipment')

* Entity_ID INT

Image_Description VARCHAR(255)

* Image_Data LONGBLOB

Indexes

Type Name On

Pk pk_entityimage Image_ID

Options

ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Evaluation

Idx Name Data Type

* Pk Evaluation_ID INT AUTO_INCREMENT

* Unq Visitor_ID INT

* Unq Performance_ID INT

* Evaluation_Date DATETIME DEFAULT current_timestamp()

* Artist_Performance TINYINT

* Sound_Lighting TINYINT

* Stage_Presence TINYINT

* Organization TINYINT

* Overall_Impression TINYINT

Indexes

Type Name On

Pk pk_evaluation Evaluation_ID

Unq Visitor_ID Visitor_ID, Performance_ID

idx_evaluation_visitor Visitor_ID

idx_evaluation_performance Performance_ID

Foreign Keys

Type Name On

Evaluation_ibfk_1 (Visitor_ID) ref Visitor (Visitor_ID)

Evaluation_ibfk_2 (Performance_ID) ref Performance (Performance_ID)

Constraints

Name Definition

Table Evaluation

cns_evaluation_artist_performance `Artist_Performance` between 1 and 3

cns_evaluation_sound_lighting `Sound_Lighting` between 1 and 3

cns_evaluation_stage_presence `Stage_Presence` between 1 and 3

cns_evaluation_organization `Organization` between 1 and 3

cns_evaluation_overall_impression `Overall_Impression` between 1 and 3

Triggers

Name Definition

check_evaluation_ticket_activation

CREATE TRIGGER ${nameWithSchemaName} BEFORE INSERT ON Evaluation FOR EACH ROW BEGIN
 DECLARE ticket_count INT;
 SELECT COUNT(*) INTO ticket_count
 FROM Ticket t
 JOIN Performance p ON t.Performance_ID = p.Performance_ID
 WHERE t.Visitor_ID = NEW.Visitor_ID
 AND t.Performance_ID = NEW.Performance_ID
 AND t.Activated = 1;
 IF ticket_count = 0 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Evaluation not allowed: visitor must have an activated ticket for the performance.';
 END IF;
END

Options

ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Event

Idx Name Data Type

* Pk Event_ID INT AUTO_INCREMENT

* Idx Festival_ID INT

* Unq Stage_ID INT

* Unq Start_Time DATETIME

* End_Time DATETIME

* Status ENUM('Scheduled','Ongoing','Completed') DEFAULT 'Scheduled'

Indexes

Type Name On

Pk pk_event Event_ID

Unq Stage_ID Stage_ID, Start_Time

idx_event_festival Festival_ID

idx_event_stage Stage_ID

Foreign Keys

Type Name On

Event_ibfk_1 (Festival_ID) ref Festival (Festival_ID)

Event_ibfk_2 (Stage_ID) ref Stage (Stage_ID)

Constraints

Name Definition

CONSTRAINT_1 `End_Time` > `Start_Time`

CONSTRAINT_2 `Status` <> 'Canceled'

Triggers

Name Definition

prevent_event_overlap

Table Event

CREATE TRIGGER ${nameWithSchemaName} BEFORE INSERT ON Event FOR EACH ROW BEGIN
 DECLARE overlap_count INT;
 SELECT COUNT(*) INTO overlap_count
 FROM Event
 WHERE Stage_ID = NEW.Stage_ID
 AND Festival_ID = NEW.Festival_ID
 AND DATE(Start_Time) = DATE(NEW.Start_Time)
 AND (
 NEW.Start_Time < End_Time AND
 NEW.End_Time > Start_Time
);
 IF overlap_count > 0 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Error: Overlapping event detected on the same stage.';
 END IF;
END

prevent_event_overlap_update

CREATE TRIGGER ${nameWithSchemaName} BEFORE UPDATE ON Event FOR EACH ROW BEGIN
 DECLARE overlap_count INT;
 SELECT COUNT(*) INTO overlap_count
 FROM Event
 WHERE Stage_ID = NEW.Stage_ID
 AND Festival_ID = NEW.Festival_ID
 AND Event_ID != NEW.Event_ID
 AND (
 NEW.Start_Time < End_Time AND
 NEW.End_Time > Start_Time
);
 IF overlap_count > 0 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Error: Overlapping event detected on the same stage.';
 END IF;
END

Options

ENGINE=InnoDB AUTO_INCREMENT=201 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Festival

Idx Name Data Type

* Pk Festival_ID INT AUTO_INCREMENT

* Year YEAR(4)

* Start_Date DATE

* End_Date DATE

Image TEXT

Image_Description TEXT

* Idx Location_ID INT

* Status ENUM('Scheduled','Ongoing','Completed') DEFAULT 'Scheduled'

Indexes

Type Name On

Pk pk_festival Festival_ID

Location_ID Location_ID

Foreign Keys

Type Name On

Festival_ibfk_1 (Location_ID) ref Location (Location_ID)

Constraints

Name Definition

CONSTRAINT_1 `End_Date` > `Start_Date`

CONSTRAINT_2 `Status` <> 'Canceled'

Options

ENGINE=InnoDB AUTO_INCREMENT=21 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Location

Idx Name Data Type

* Pk Location_ID INT AUTO_INCREMENT

* Address VARCHAR(255)

Coordinates VARCHAR(100)

* City VARCHAR(100)

* Country VARCHAR(100)

Continent VARCHAR(100)

Image TEXT

Image_Description TEXT

Indexes

Type Name On

Pk pk_location Location_ID

Options

ENGINE=InnoDB AUTO_INCREMENT=21 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table MusicGenre

Idx Name Data Type

* Pk Genre_ID INT

Name TEXT

Subgenre TEXT

Indexes

Type Name On

Pk pk_musicgenre Genre_ID

Options

ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Performance

Idx Name Data Type

* Pk Performance_ID INT AUTO_INCREMENT

* Idx Event_ID INT

Idx Artist_ID INT

Idx Band_ID INT

* Type ENUM('Warm Up','Headline','Special Guest')

* Start_Time DATETIME

* Duration INT

Indexes

Type Name On

Pk pk_performance Performance_ID

idx_performance_artist Artist_ID

idx_performance_band Band_ID

idx_performance_event Event_ID

Foreign Keys

Type Name On

Performance_ibfk_1 (Event_ID) ref Event (Event_ID)

Performance_ibfk_2 (Artist_ID) ref Artist (Artist_ID)

Performance_ibfk_3 (Band_ID) ref Band (Band_ID)

Constraints

Name Definition

Table Performance

cns_performance_duration `Duration` > 0 and `Duration` <= 180

CONSTRAINT_1 `Artist_ID` is not null and `Band_ID` is null or
`Artist_ID` is null and `Band_ID` is not null

Triggers

Name Definition

check_artist_consecutive_years

CREATE TRIGGER ${nameWithSchemaName} BEFORE INSERT ON Performance FOR EACH ROW BEGIN
 DECLARE year INT;
 DECLARE consecutive_years INT;
 IF NEW.Artist_ID IS NOT NULL THEN

 SELECT f.Year INTO year
 FROM Event e
 JOIN Festival f ON e.Festival_ID = f.Festival_ID
 WHERE e.Event_ID = NEW.Event_ID;

 SELECT COUNT(DISTINCT f.Year) INTO consecutive_years
 FROM Performance p
 JOIN Event e ON p.Event_ID = e.Event_ID
 JOIN Festival f ON e.Festival_ID = f.Festival_ID
 WHERE p.Artist_ID = NEW.Artist_ID
 AND f.Year BETWEEN year - 2 AND year;
 IF consecutive_years > 3 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Artist cannot perform more than 3 consecutive years.';
 END IF;
 END IF;
END

check_band_consecutive_years

CREATE TRIGGER ${nameWithSchemaName} BEFORE INSERT ON Performance FOR EACH ROW BEGIN
 DECLARE current_year INT;
 DECLARE consecutive_years INT;
 IF NEW.Band_ID IS NOT NULL THEN

 SELECT f.Year INTO current_year
 FROM Event e
 JOIN Festival f ON e.Festival_ID = f.Festival_ID
 WHERE e.Event_ID = NEW.Event_ID;

 SELECT COUNT(DISTINCT f.Year) INTO consecutive_years
 FROM Performance p
 JOIN Event e ON p.Event_ID = e.Event_ID
 JOIN Festival f ON e.Festival_ID = f.Festival_ID
 WHERE p.Band_ID = NEW.Band_ID
 AND f.Year BETWEEN current_year - 2 AND current_year;
 IF consecutive_years >= 3 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Band cannot perform more than 3 consecutive years.';
 END IF;
 END IF;
END

check_performance_break

Table Performance

CREATE TRIGGER ${nameWithSchemaName} BEFORE INSERT ON Performance FOR EACH ROW BEGIN
 DECLARE previous_end_time DATETIME;
 DECLARE break_duration INT;
 DECLARE conflicting_count INT;

 SELECT COUNT(*) INTO conflicting_count
 FROM Performance
 WHERE Event_ID = NEW.Event_ID
 AND DATE(Start_Time) = DATE(NEW.Start_Time)
 AND (

 (NEW.Start_Time BETWEEN Start_Time AND (Start_Time + INTERVAL Duration MINUTE - INTERVAL 1 SECOND))
 OR ((NEW.Start_Time + INTERVAL NEW.Duration MINUTE - INTERVAL 1 SECOND) BETWEEN Start_Time AND (Start_Time + INTERVAL
Duration MINUTE - INTERVAL 1 SECOND))
 OR (Start_Time BETWEEN NEW.Start_Time AND (NEW.Start_Time + INTERVAL NEW.Duration MINUTE - INTERVAL 1 SECOND))
);
 IF conflicting_count > 0 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Performance time overlaps with an existing performance.';
 END IF;
 SELECT MAX(Start_Time + INTERVAL Duration MINUTE) INTO previous_end_time
 FROM Performance
 WHERE Event_ID = NEW.Event_ID
 AND Start_Time < NEW.Start_Time
 AND DATE(Start_Time) = DATE(NEW.Start_Time);
 IF previous_end_time IS NOT NULL THEN
 SET break_duration = TIMESTAMPDIFF(MINUTE, previous_end_time, NEW.Start_Time);

 IF break_duration < 5 OR break_duration > 30 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Break between performances must be between 5 and 30 minutes.';
 END IF;
 END IF;
END

prevent_artist_overlap

CREATE TRIGGER ${nameWithSchemaName} BEFORE INSERT ON Performance FOR EACH ROW BEGIN
 DECLARE overlap_count INT;
 DECLARE festival_id INT;
 IF NEW.Artist_ID IS NOT NULL THEN
 SELECT e.Festival_ID INTO festival_id
 FROM Event e
 WHERE e.Event_ID = NEW.Event_ID;
 SELECT COUNT(*) INTO overlap_count
 FROM Performance p
 JOIN Event e ON p.Event_ID = e.Event_ID
 WHERE p.Artist_ID = NEW.Artist_ID
 AND e.Festival_ID = festival_id
 AND (
 NEW.Start_Time < ADDTIME(p.Start_Time, SEC_TO_TIME(p.Duration * 60)) AND
 ADDTIME(NEW.Start_Time, SEC_TO_TIME(NEW.Duration * 60)) > p.Start_Time
);
 IF overlap_count > 0 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Artist has overlapping performance in the same festival.';
 END IF;
 END IF;
END

prevent_band_overlap

Table Performance

CREATE TRIGGER ${nameWithSchemaName} BEFORE INSERT ON Performance FOR EACH ROW BEGIN
 DECLARE overlap_count INT;
 DECLARE festival_id INT;
 IF NEW.Band_ID IS NOT NULL THEN
 SELECT e.Festival_ID INTO festival_id
 FROM Event e
 WHERE e.Event_ID = NEW.Event_ID;
 SELECT COUNT(*) INTO overlap_count
 FROM Performance p
 JOIN Event e ON p.Event_ID = e.Event_ID
 WHERE p.Band_ID = NEW.Band_ID
 AND e.Festival_ID = festival_id
 AND (
 NEW.Start_Time < ADDTIME(p.Start_Time, SEC_TO_TIME(p.Duration * 60)) AND
 ADDTIME(NEW.Start_Time, SEC_TO_TIME(NEW.Duration * 60)) > p.Start_Time
);
 IF overlap_count > 0 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Band has overlapping performance in the same festival.';
 END IF;
 END IF;
END

Options

ENGINE=InnoDB AUTO_INCREMENT=201 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table ResaleBuyerQueue

Idx Name Data Type

* Pk Queue_ID INT AUTO_INCREMENT

* Idx Buyer_ID INT

* Idx Performance_ID INT

* Category ENUM('General','VIP','Backstage')

* Requested_At DATETIME DEFAULT current_timestamp()

* Status ENUM('Waiting','Matched','Cancelled') DEFAULT 'Waiting'

Indexes

Type Name On

Pk pk_resalebuyerqueue Queue_ID

idx_resalebuyerqueue_buyer Buyer_ID

idx_resalebuyerqueue_performance Performance_ID

Foreign Keys

Type Name On

ResaleBuyerQueue_ibfk_1 (Buyer_ID) ref Visitor (Visitor_ID)

ResaleBuyerQueue_ibfk_2 (Performance_ID) ref Performance (Performance_ID)

Options

ENGINE=InnoDB AUTO_INCREMENT=51 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table ResaleTicket

Idx Name Data Type

* Pk ResaleTicket_ID INT AUTO_INCREMENT

* Idx Ticket_ID INT

* Idx Seller_ID INT

* Listed_At DATETIME DEFAULT current_timestamp()

* Status ENUM('Available','Sold','Withdrawn') DEFAULT 'Available'

Indexes

Type Name On

Pk pk_resaleticket ResaleTicket_ID

idx_resaleticket_ticket Ticket_ID

idx_resaleticket_seller Seller_ID

Table ResaleTicket

Foreign Keys

Type Name On

ResaleTicket_ibfk_1 (Ticket_ID) ref Ticket (Ticket_ID)

ResaleTicket_ibfk_2 (Seller_ID) ref Visitor (Visitor_ID)

Options

ENGINE=InnoDB AUTO_INCREMENT=51 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Staff

Idx Name Data Type

* Pk Staff_ID INT AUTO_INCREMENT

* Name VARCHAR(100)

* Age INT

* Role ENUM('Technical','Security','Auxiliary')

* Experience_Level ENUM('Intern','Beginner','Intermediate','Experienced','Expe
rt')

Indexes

Type Name On

Pk pk_staff Staff_ID

Constraints

Name Definition

cns_staff_age `Age` >= 18

Options

ENGINE=InnoDB AUTO_INCREMENT=301 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table StaffAssignment

Idx Name Data Type

* Pk Staff_ID INT

* Pk Event_ID INT

Indexes

Type Name On

Pk pk_staffassignment Staff_ID, Event_ID

idx_staffassignment_staff Staff_ID

idx_staffassignment_event Event_ID

Foreign Keys

Type Name On

StaffAssignment_ibfk_1 (Staff_ID) ref Staff (Staff_ID)

StaffAssignment_ibfk_2 (Event_ID) ref Event (Event_ID)

Options

ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Stage

Idx Name Data Type

* Pk Stage_ID INT AUTO_INCREMENT

* Name VARCHAR(100)

Description TEXT

* Max_Capacity INT

Technical_Equipment TEXT

Image TEXT

Table Stage

Image_Description TEXT

Indexes

Type Name On

Pk pk_stage Stage_ID

Constraints

Name Definition

cns_stage_max_capacity `Max_Capacity` > 0

Options

ENGINE=InnoDB AUTO_INCREMENT=61 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Ticket

Idx Name Data Type

* Pk Ticket_ID INT AUTO_INCREMENT

* Unq Performance_ID INT

* Unq Visitor_ID INT

* Category ENUM('General','VIP','Backstage')

* Unq Purchase_Date DATE

* Cost DECIMAL(10,2)

* Payment_Method ENUM('Credit Card','Debit Card','Bank Transfer')

* Unq EAN131_Code BIGINT

Activated BOOLEAN DEFAULT false

Indexes

Type Name On

Pk pk_ticket Ticket_ID

Unq EAN131_Code EAN131_Code

Unq Visitor_ID Visitor_ID, Performance_ID, Purchase_Date

idx_ticket_performance Performance_ID

idx_ticket_visitor Visitor_ID

Foreign Keys

Type Name On

Ticket_ibfk_1 (Performance_ID) ref Performance (Performance_ID)

Ticket_ibfk_2 (Visitor_ID) ref Visitor (Visitor_ID)

Triggers

Name Definition

check_stage_capacity

CREATE TRIGGER ${nameWithSchemaName} BEFORE INSERT ON Ticket FOR EACH ROW BEGIN
 DECLARE total_tickets INT;
 DECLARE stage_capacity INT;
 SELECT COUNT(*) INTO total_tickets
 FROM Ticket
 WHERE Performance_ID = NEW.Performance_ID;
 SELECT s.Max_Capacity INTO stage_capacity
 FROM Performance p
 JOIN Event e ON p.Event_ID = e.Event_ID
 JOIN Stage s ON e.Stage_ID = s.Stage_ID
 WHERE p.Performance_ID = NEW.Performance_ID;
 IF total_tickets >= stage_capacity THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Cannot sell ticket: stage capacity exceeded.';
 END IF;
END

check_vip_limit

Table Ticket

CREATE TRIGGER ${nameWithSchemaName} BEFORE INSERT ON Ticket FOR EACH ROW BEGIN
 DECLARE vip_tickets INT;
 DECLARE stage_capacity INT;
 DECLARE max_vip_tickets INT;
 IF NEW.Category = 'VIP' THEN
 SELECT COUNT(*) INTO vip_tickets
 FROM Ticket
 WHERE Performance_ID = NEW.Performance_ID
 AND Category = 'VIP';
 SELECT s.Max_Capacity INTO stage_capacity
 FROM Performance p
 JOIN Event e ON p.Event_ID = e.Event_ID
 JOIN Stage s ON e.Stage_ID = s.Stage_ID
 WHERE p.Performance_ID = NEW.Performance_ID;
 SET max_vip_tickets = FLOOR(stage_capacity * 0.10);
 IF vip_tickets >= max_vip_tickets THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'Cannot sell VIP ticket: VIP limit exceeded.';
 END IF;
 END IF;
END

Options

ENGINE=InnoDB AUTO_INCREMENT=401 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table TicketResaleQueue

Idx Name Data Type

* Pk Queue_ID INT

Idx Ticket_ID INT

Queue_Type TEXT

Queue_Timestamp DATETIME

Indexes

Type Name On

Pk pk_ticketresalequeue Queue_ID

Ticket_ID Ticket_ID

Foreign Keys

Type Name On

TicketResaleQueue_ibfk_1 (Ticket_ID) ref Ticket (Ticket_ID)

Options

ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Table Visitor

Idx Name Data Type

* Pk Visitor_ID INT AUTO_INCREMENT

* First_Name VARCHAR(100)

* Last_Name VARCHAR(100)

* Contact_Info VARCHAR(255)

* Age INT

Indexes

Type Name On

Pk pk_visitor Visitor_ID

Constraints

Name Definition

cns_visitor_age `Age` >= 0

Options

ENGINE=InnoDB AUTO_INCREMENT=401 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

Schema kosni_db

Procedures

ProcessResaleQueue

